Finite Simple Groups

Exercise Sheet 7 Due 02.07.2019

Exercise 1 (4 Points). Let G be $SL(2, 2^k)$ and let t be an element of order 2. Prove that $C_G(t)$ is isomorphic to $C_2 \times .^k \times C_2$.

Exercise 2 (4 Points).

Let F be the finite field of order q, where q is an odd prime power.

1. Show that elements of SL(2, q) of the form

$$\left(\begin{array}{cc}a&b\\-(1+a^2)b^{-1}&-a\end{array}\right),$$

with $b \in F^{\times}$ and $a \in F$, yield elements of order 2 of PSL(2,q).

2. Conclude that PSL(2,q) cannot be embedded into SL(2,q).

Exercise 3 (6 Points).

The extended centralizer of an element x of a group G is defined as

$$C_G^*(x) = \{g \in G : x^g \in \{x, x^{-1}\}\}.$$

- 1. Prove that $C_G^*(x)$ is a subgroup of G and that $C_G(x) = C_G^*(x)$ whenever x and x^{-1} are not conjugate or $x^2 = 1$.
- 2. Show that the set of elements $g \in G$ such that $x^g = x^{-1}$ is empty or a coset of $C_G(x)$.
- 3. Conclude that $|C_G^*(x):C_G(x)|=2$ whenever $x^2\neq 1$ and x and x^{-1} are conjugate.

Exercise 4 (6 Points).

Recall that the finite dihedral group D_{2n} is the semidirect product of a cyclic group $\langle a \rangle$ of order n and a cyclic group $\langle t \rangle$ of order 2 such that $a^t = a^{-1}$. See Exercise 3, Exercise Sheet 4.

- 1. Assume that D is a finite non-abelian group geneterated by two elements x and y such that x has order 2 and $y^x = y^{-1}$. Prove that D is a dihedral group D_{2n} for some n.
- 2. Prove that every finite dihedral group can be generated by two involutions.
- 3. Prove that if a finite group is generated by two involutions, then it is a dihedral group.